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Abstract. We consider for the first time the influence of the local violation of symmetry with 
respect to spatial inversion on the properties of disordered systems. A specific example of 
this influence is the local piezoelectric effect in disordered dielectrics. The simplest static 
and dynamic properties of these systems are investigated. 

1. Introduction 

The local violation of spatial homogeneity is one of the definitive properties of the 
various kinds of disordered systems (amorphous materials, glasses etc). The majority 
of papers in this field deal with the investigation of the influence of this property on 
different physical phenomena. Violation of spatial homogeneity results in symmetry 
violation with respect to inversion. However, I do not know of any papers in which this 
fact was considered. At  the same time it is clear that this element of symmetry is 
very important, as its presence leads to the preclusion of a whole number of physical 
phenomena. Thus the local violation of this preclusion may influence the properties of 
various disordered materials. 

In the present paper this idea is demonstrated on the example of the local piezoelectric 
effect in disordered dielectrics. The piezoelectric properties of a continuous medium are 
known to be characterised by a tensor of the third rank v j j k ,  which only differs from zero 
in the absence of central symmetry [ 11. By a local piezoelectric effect we mean the linear 
relation of a local electric field to a local tensor of deformations. This relation is described 
by a random tensor field V i j k ( r ) .  Its average value over the ensemble (which is equivalent 
to the space average when spatial ergodicity is present) will be considered to be zero. In 
specific calculations we shall use the simplest form of this tensor with a minimal number 
of parameters: 

V y k  = V l l j d j k  + V Z ( l j d i k  f l k d i j ) .  (1) 
Here v and v 2  are piezomodules that will be considered to be constant parameters, and 
1 is a unit random vector with the following statistical properties 

( l i ( r ) >  = 0 ( l i (r) l j (r ' ) )  = $d,K,(r  - r ' ) .  (2) 
Here K,(r) is a normalised correlation function characterised by an arbitrary correlation 
radius r,. Expressions (1) and (2) imply the presence of local anisotropy in the system 
that is in agreement with modern representations concerning the structure of disordered 
systems and a popular model of local uniaxial anisotropy (see e.g. [2-41). However, we 
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shall neglect this anisotropy in the elastic and dielectric characteristics of the system. Its 
influence on the results will be considered in the process of investigation. 

Thus, the free energy of the system F will be written in the form 

F =  ~ A U ;  + p ~ v ~ j ;  - (1/8n)(~E* + H2) - v ~ ( Z *  E)u;j - ~ 2 E j f j ( ~ j j  + up) (3) 
where uv = auj/dxj  is distorsion tensor, A and p are elastic modules, E is a local dielectric 
constant of the medium, and E is an electric field. 

From (3) there follows an important equation relating a tensor of elastic stresses aij 
and a vector of electric induction D to a distortion tensor uv and the electric field E ,  
respectively 

2. Static properties of materials with a local piezoelectric effect 

First of all, let us study several of the simplest static properties of systems with a local 
piezoelectric effect. In principle, the essence of these properties is the same as in the 
case of the normal piezoelectric effect-the appearance of deformations under the 
application of an electric field-and vice uersa. The difference is the following. In the 
case under consideration it is necessary to speak of the local deformation and the local 
electric field, which are random fields and, therefore, require a statistical approach for 
their description. It is quite evident that it is not sufficient to investigate only average 
values, and so we shall also consider two-point autocorrelation functions of these fields. 

To determine average values, let us consider the problem of a mean field inside an 
infinite ellipsoid placed in the external electric field E e x .  The infinity is required to 
simplify the elastostatic part of the problem. In this case one can use a well-known 
expression for the Green tensor of an infinite isotropic medium [ 5 ] .  In an electrostatic 
sense, an ellipsoid is considered to be finite, with the usual boundary conditions. 

Finding the deformation tensor U,, from the elastostatic equations and substituting 
the result into (4b), we obtain a closed system of electrostatic equations. Its peculiarity 
is in the non-local character of the relation between the vectors of the electric induction 
D and the field E .  The main problem here is finding an effective dielectric constant that 
would enable us to replace a precise equation by a generally relevant local one relating 
the average values (0) and {E) .  In the process of averaging we need to decouple 
correlators of the form {EJ,lk) multiplied by a coefficient that is quadratic over the 
peizomodules. Let us represent the field E by the form E = ( E )  + E ,  where E is a 
fluctuating part of this field: (k) = 0. Substituting the expression into the correlator 
we obtain {EJ,fk)  = (El)(l,lk) + (E&). Since the value E,  is of the first order over the 
piezomodules, the second summand would appear to be of the third order. Thus, it will 
be neglected from now on. We have therefore arrived at the desired effective dielectric 
constant: 

E e f f  = E o  + (47C/9)[4V;/p + ( 3 V :  + 4VlV2 + 4V;)/(A f 2p)]. ( 5 )  
To solve the problem further one should use well-known formulae that can be found in 
any textbook (see, e.g. [l]) taking into account expression (5). 

One should here note that the fluctuating anisotropy in the local dielectric constant 
(which was neglected) also contributes to Eeff. Proceeding from the results of such simple 
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calculations it is not possible to separate these contributions. However, one should bear 
in mind the existence of these two mechanisms forming Eeff: usually only one, namely 
the presence of a fluctuating part in ~ ( r ) ,  is taken into account. 

We have mentioned above that to give a more detailed description of the system 
under consideration it is necessary to investigate the correlation properties of random 
fields appearing in the system. We now investigate two-point autocorrelation functions 
both of the electric field in the sample when subjected to the external stress and of the 
deformation field in the sample when placed in the external electric field. And we restrict 
ourselves to the first approximation over the piezomodules. It is easy to show that the 
end effects have no influence on these correlation functions if the sample sizes are much 
greater than the correlation radius that appears in (2). It is then convenient to make a 
Fourier transformation of the corresponding equations and to calculate correlators 
of the following form: (ii[,(k)ii;/(k’)) and (,!?[(k),!?: (k ‘ ) ) ,  where ,!?, and ii, are Fourier 
transforms of the corresponding centred values; iil, = ut, - ( u J ,  U,, = (uy + u,,)/2. 
Performing simple calculations we obtain that 

(Bi(k)ET ( k ’ ) )  qj,(k)S(k - k ’ )  

(fi i j(k)fiz/(k’))  = Tijj,/(k)a(k - k’)  

where 

qu (k )  = ( 4 n / ~ k ~ ) ~ k ~ k ~ l  vlUIP,)km + 2v2kjUf$ 1 ’  S,(k) (8) 
and the expression for the tensor Ti$,/ is too bulky to give in full. Therefore we shall 
restrict ourselves to the convolution Tii;:ikk Tv(k), which in the linear approximation 
over ui, describes local fluctuations of the volume AV(r): 

T d k )  = [v,/(A + 2P)I2[G + 3 ( v , / v , ) 2 ( k . E o ) 2 / k 2 1 S / ( k ) .  (9) 
U$?) and Eo in (9) represent the deformation tensor and the electric field of the medium, 
respectively, calculated in the zero-order piezoelectric effect approximation. SI( k) is a 
Fourier transform of the correlation function (2). Expressions (6) and ( 7 )  are obtained 
if one assumes that U$?) and Eo are homogeneous inside the sample. They mean that 
under these conditions the fields uij(r) and E(r)  are homogeneous random fields. Their 
correlation properties are determined by the Fourier-transformation of values (8) and 
(9): 

v 1  Ui;)km + 2v2kjUf$ ’ I Sl(k)eik“ d 3 k  (10) 
k 

K, (r )  = ( - ) 2 K / ( r )  + 3(”J2 j ( k * : o ) 2  k Sl(k)eik“ d3k. A + 2p A + 2p 
(11) 

(K,(r)  is determined from (2).) 
Further analysis requires a specific definition of the correlation function (2) and of 

the corresponding function SI( k). We shall consider two types of the correlation function: 

K i ( r )  = exp(-r2/2rz) S / ( r )  = [ r : / ( 2 ~ ) ~ ’ ~ ]  exp(-k2rf/2) (12) 

(13) 
~ f ’ ( r )  = (1 - r2/3rf) exp(-r2/2rz) 

The main difference between them is in the fact that expression (13) describes a random 

S / ’ ( Y )  = [k2r1/3(2~)3’2] exp(-k2rf/2). 
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Figure 1. Plots of the dependence of the correlation functions of local volume fluctuations 
on the distance along different directions with respect to the field. The corresponding angles 
are: v ,  = 0", vz = 30", vs  = 60". v4 = 90". 

field with anticorrelation effects, and J K f ' ( r )  d 3 r  = Sl'(0) = 0. Functions of this type 
were first used to model disordered systems in [6]. It was shown there that the properties 
of the system may in this case change considerably. 

For the correlation function of the volume fluctuations (11) the calculations may be 
worked through to the end. So we obtain 

~ : ( r )  = [(v: +3v$cos2 q)/(A +2p)2]E20exp( -r2/2rf) +3[v2E0/(A +&)I2 

x (2c0s2 q - sin2 q) (rf/r2)[exp(-r2/2rz) - ( r c / r ) V \ / 0 e r f ( r / ~ r c > l t  

(14) 
using S'(k) and 

KF(r) = {[vlE, / (A + 2p)I2 + 6[~2&/(A + 2p)I2[1 - (r2/rf) cos2 q])exp(-r2/2rE) 

using S"(k), where qj is the angle between the direction of observation and the field Eo. 
The main difference between (14) and (15) is in their behaviour at infinity (see figure 

1). The behaviour of the correlation function (15) is similar to that of the initial function 
(13). At the same time, in expression (14) instead of the Gaussian law (13) there appears 
a power tail of the form 

(15) 

~ t ( r )  - [E,v , / (A  + 2p)I2(sin2 qj - 2 cos2 qj)r: /r3 (16) 
the sign of which changes at I) = 55". 

When investigating the correlation properties of a random electric field E(r) 
described by the tensor (10) we confined ourselves to a numerical integration of 
expression (10) usingspectral density S'(k) (12). The tensor of the external deformations 
U f "  is chosen in the form UI;") = U(O)n,n,, which describes a uniaxial deformation in the 
direction of a unit vector, n. In the system of coordinates with an axis Oz parallel to n, the 

2 1  
t erf(x) = - e-'*/' df is the well-known error function. 

fi" 
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Figure 2. Plots of the dependence of the correlators (a) (EI(r)Ex(0))  and ( b )  (&(r)EZ(O)) on 
the distance along different directions with respect to deformation axis. Angle values are the 
same as in figure 1. 

correlation tensor Ki,(r) isdiagonal, and K,, = Kyy. Figure2showsplotsofcomponentsof 
this tensor: K,,(figure 2(a)) and K,,(figure 2(6)). They describe the behaviour of the 
correlators (E,(r)E,(O)) and (~!?~(r) l?~(O))  respectively. It is seen that there is also a 'tail' 
here, which is analogous to the tail of the correlation function Kb(r) ,  however, it is 
'shorter' than that in figure 1: the law l/r3 (see (16)) is replaced by the law 1/15. Let us 
also pay attention to the fact that anticorrelation effects are characteristic of fluctuations 
of the electric field at any angles between the direction of observation and the 
deformation axis n . t  

In conclusion, we may write down the following expressions for the dispersions y $  
and yv of the electric field and the local volume fluctuations: 

y$ = (Bi(0)Bj(O))'/2 = (4JGUO/fl&)[v: + +5v2(v1 + v2)]1/28ij 

y" = (Q?.(0))1/2 = [(vi + .;)'"/(A + 2 p ) ] E o .  
(17) 

We would now like to emphasise the dependence of y $  and yv on the value of the 
corresponding external action. This enables us, in principle, to influence these par- 
ameters and to create models of disordered systems with a regulated degree of disorder. 

3. Elastic and electromagnetic waves 

In this section we investigate the influence of the local piezoelectric effect on the 
dispersion laws for elastic and electromagnetic waves. To obtain them we have two 
different but equivalent methods. One can solve the initial stochastic equation using 
perturbation theory. The series obtained is then averaged and summed using one 
approximation or another (see, e.g. [7]).  The second method is the following. First we 
average the equation itself and then we use perturbation theory to obtain an average of 
the value under consideration. There are several equivalent formulations of this method, 
e.g. [8,9]. We applied the approach developed in [9]. And we restricted ourselves to 

t Using the correlation function K f ' ( r ) ,  replace the law r-5 by the law r -3  and the others features of these 
correlators are not changed. 
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the first non-disappearing correction for the dispersion law that is equivalent to the well 
known Bourret approximation [lo]. 

Thus, solving Maxwell’s equations and those of elasticity theory for the dispersion 
law of a transverse elastic wave, we obtain the following expression: 

w = s L k  1+-- 2 +  d3q  q 2  + q: S,(k - q ) ) ]  [ 1 k2pY2 - q 2  

where sL is the unperturbed velocity of the transverse wave and PI = c/&s, -- 
103-105. The analysis of similar expressions was performed for the first time in [ 111. The 
results are as follows. In the region of wavenumbers k G P,k, (k, is a correlation 
wavenumber of inhomogeneities Z(r), k, 2: l/rc) the dispersion law is linear with the 
renormalised velocity 

S, = s,[l + ( 4 n / 9 ~ ) ( ~ $ / p ) ] .  (19) 

Deviations from (19) begin to appear at k -- P,k,. However, if one considers the order 
of value PL, it may be seen that this region lies far beyond the limits of the wavenumbers 
possible for a continuous theory at reasonable values, for disordered materials rc -- 1- 
100 A.  Thus, local piezoelectric effect does not modify the dispersion law of elastic 
waves. The modification will appear if we need to take into account the random ani- 
sotropy in the tensor of the elastic modules. Such a problem without an account of 
the piezoelectric effect has been solved in [12]. It is clear that a purely piezoelectric 
contribution will not change the nature of this modification. However, there is also a 
cross term which takes into account the cross-correlation of the anisotropy of the elastic 
modules and a piezotensor. We shall not here consider the contribution of this term that 
is valid under the condition v:/b < 1, where b is an elastic module characterising the 
anisotropy value. 

For a transverse electromagnetic wave, the modified dispersion law has the form 

q:S , (k -  4)  4 jd”q pfk’ - q 2  +- 

where Pi, = c / f i s ~ , .  Here the situation is more complicated, as there are terms cor- 
responding to the scattering of the electromagnetic wave both by longitudinal elastic 
waves (terms containing PI I )  and by transverse ones (terms containing pL). However, 
this com lication is not very important, as usually PI. -- Pi1 (or more exactly, 
PI b P 2Pll) and therefore deviations from the linear law due to both groups of terms 
will be approximately in one region, k = k,/B. Taking into account the value p, it is clear 
that the dispersion law modification of the electromagnetic wave shifts considerably 
towards the region of the wavenumbers less than the correlation wavenumber k,, by 
some three to five orders of magnitude. In other words, inhomogeneities of the size of 
r, appear in the dispersion law in the region of wavelengths A -- 103-105rc. A similar 
effect was first discovered in [ l l ]  when studying electromagnetic waves in disordered 
metals. It was called the ‘microscope’ effect. 

To get a notion of the dispersion curve behaviour, let us find asymptotes of the 
dispersion law (20) in two limit cases k 4 k,/P and k % k,/P. 
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Figure 3. Qualitative form of the dispersion law 
of the electromagnetic waves in the region of 
wavenumbers k - k , /P .  In the region k - k, ,  one 
more modification related to fluctuations of 
dielectric constant may be observed. - 

k 

At k 4 k, /p  

z (ck/d/E){ l  - +~d[(3v:  + 4Vlv2 + .:)/(A + 2 p )  + 4v: /p ] } .  (21)  
At k S k,/P 

w = ( ~ k / f i ) i u  + f ~ d { [ ~ : / ( ~  + 2p)1pii2 + (2v: /p)p;2>n.  (22)  
A s p  S 1, the last terms in (22)  become too small to be taken into account. An approxi- 
mate form of the curve is given in figure 3 .  

A consideration of the fluctuations of the dielectric constant (e.g. local anisotropy) 
leads to an equal additional negative contribution to both (21)  and (22 ) ,  since the 
dispersion law modification related to these fluctuations is in the region k = k,. The 
contribution of these terms, taking into account the cross-correlation of these fluc- 
tuations with the piezotensor vijk,  may always be neglected. 

The local piezoelectric effect leads to the appearance of a longitudinal component 
of the electromagnetic field. The equation for its average amplitude in our approximation 
has the form 

At w < wC,  where w, is a critical frequency, the expression in the square brackets has a 
negative sign. Consequently, the dispersion equation following from (23)  has no solu- 
tions at these frequencies and (E,) is equal to zero. We can find the longitudinal 
component by calculating (E:) ,  which does not vanish; however, this problem is not in 
the framework of our paper. 

At w > U,, the integrals change sign and, in principle, (E,) # 0 may exist. However, 
the critical value of the frequency implies the existence of the critical value of the 
piezomodule v,. This is easy to see in the limiting case, when in the denominator of the 
subintegral expression the term q2 may be neglected. From this it follows that the case 
w > w, (v > v,) is beyond the limit of applicability of the approximation considered. 
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Nevertheless, the result obtained may indicate the possibility of the appearance of a 
non-zero mean amplitude of the longitudinal electromagnetic wave at a rather strong 
disorder. More accurate investigation of this problem, as well as the study of the 
character of such an excitation, requires consideration in a separate paper. 
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